Time Historical Analysis Method for Stiff Piecewise-Linear System
نویسندگان
چکیده
منابع مشابه
Solving a System of Linear Equations by Homotopy Analysis Method
In this paper, an efficient algorithm for solving a system of linear equations based on the homotopy analysis method is presented. The proposed method is compared with the classical Jacobi iterative method, and the convergence analysis is discussed. Finally, two numerical examples are presented to show the effectiveness of the proposed method.
متن کاملSequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملStability analysis of piecewise discrete-time linear systems
This note presents a stability analysis method for piecewise discrete-time linear systems based on a piecewise smooth Lyapunov function. It is shown that the stability of the system can be established if a piecewise Lyapunov function can be constructed and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that is numerically feasible with commercially...
متن کاملA method for solving fully fuzzy linear system
In this paper, a numerical method for nding minimal solution of a mn fullyfuzzy linear system of the form Ax = b based on pseudo inverse calculation,is given when the central matrix of coecients is row full rank or column fullrank, and where A~ is a non-negative fuzzy mn matrix, the unknown vectorx is a vector consisting of n non-negative fuzzy numbers and the constant b isa vector consisting o...
متن کاملGlobal analysis of a piecewise linear Liénard-type dynamical system
In this paper, we consider a planar dynamical system with a piecewise linear function containing an arbitrary (but finite) number of dropping sections and approximating some continuous nonlinear function. Studying all possible local and global bifurcations of its limit cycles, we prove that such a piecewise linear dynamical system with k dropping sections and 2k + 1 singular points can have at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japan Society of Mechanical Engineers Series C
سال: 1997
ISSN: 1884-8354,0387-5024
DOI: 10.1299/kikaic.63.1118